LIST OF PROGRAMS

Prg.	Name of the Program
No.	
1	Study of Pin Diagram of 8085
2	Study of Architecture of 8085
3	Study of 8085 Kit
4	Reverse Order
5	Exchange of memory blocks
6	Absolute Difference
7	Even and Odd numbers
8	First Occurrence of AB _H
9	Total occurrences of AB _H
10	Multiplication
11	Division
12	Smallest and Largest numbers
13	Separate nibbles and multiply
14	BCD addition
15	DAD instruction
16	Ascending order
17	Palindrome
18	BCD to Binary

Experiment No 1 Aim: - To study the Pin Diagram of 8085 microprocessor

Figure above shows the pin layout of 8085 microprocessor. All the signals can be classified into six groups:

- 1. Address Bus
- 2. Data Bus
- 3. Control and status signals
- 4. Power Supply and Frequency signals
- 5. Externally initiated signals

6. Serial I/O ports

Address Bus

8085 has eight lines, $A_8 - A_{15}$, which are unidirectional and used as the higher order address bus.

Multiplexed Address/Data Bus

The signal lines $AD_7 - AD_0$ are bidirectional; they serve a dual purpose. They are used as the low-order address bus as well as the data bus. In executing an instruction, during the earlier part pf the cycle, these lines are used as the low-order address bus. During the later part of the cycle, these lines are used as the data bus. For separating the low-order address bus and data bus, a separate address latch called ALE is used.

Control and Status Signals:

This group of signals includes two control signals ($\overline{R_D}$ and $\overline{W_R}$), three status signals (IO/\overline{M} , S_1 and S_0) to identify the nature of the operation, and one special signal (ALE) to indicate the beginning of the operation. These signals are as follows:

- ➤ ALE Address Latch Enable. This is a positive going pulse generated every time the 8085 begins an operation (machine cycle); it indicates that the bits AD_7 AD_0 are address bits. This signal is used primarily to latch the low-order address from the multiplexed bus and generate a separate set of eight address lines, $A_7 A_0$.
- > $\overline{R_D}$ **Read**. This is a Read control signal (active low). This signal indicates that the selected I/O or memory device is to be read and data are available on the data bus.
- > $\overline{W_R}$ Write. This is a Write control signal (active low). This signal indicates that the data on the data bus are to be written into a selected memory or I/O location.
- > IO/\overline{M} . This is a status signal used to differentiate between I/O and memory operations. When it is high, it indicates an I/O operation; when it is low, it indicates a memory operation. This signal is combined with $\overline{R_D}$ (Read) and $\overline{W_R}$ (Write) to generate I/O memory control signals.
- > S_1 and S_0 : These status signals, similar to IO/ \overline{M} , can identify various operations, but they are rarely used in small systems.

Power Supply and Clock Frequency

The power supply and grequency signals are as follows:

- V_{CC} +5V power supply.
- V_{ss} Ground Reference.

- X₁, X₂ A crystal (or RC, LC network) is connected at these two pins. The frequency is internally divided by two; therefore, to operate a system at 3 MHz, the crystal should have a frequency of 6 MHz.
- CLK (OUT) Clock Output: This signal can be used as the system clock for other devices.

Externally initiated signals including interrupts:

The 8085 has five interrupt signals that can be used to interrupt a program execution. The microprocessor acknowledges an interrupt request by the \overline{INTA} (Interrupt Acknowledge) signal.

Name	of	the	Description
Interrupt			
INTR(Input	t)		Interrupt Request: This is used as a general purpose interrupt.
INTA (Out	out)		Interrupt Acknowledgement: This is used to acknowledge an
			interrupt.
RST 7.5, R	ST 6.5	and	Restart Interrupt: These are vectored interrupts and transfer the
RST 5.5 (In	puts)		program control to the INTR interrupt. The priority order is 7.5,
			6.5 and 5.5.
TRAP (Inpเ	ut)		This is a non-maskable interrupt and has the highest priority.
HOLD (Inp	ut)		This signal indicates that a peripheral such as a DMA (Direct
			Memory Access) controller is requesting the use of the address
			bus and data bus.
HLDA(Out	put)		Hold Acknowledge: This signal acknowledges the HOLD request.
READY(Inp	out)		This signal is used to delay the microprocessor Read or Write
			cycles until a slow-responding peripheral is ready to send or
			accept data. When this signal goes low, the microprocessor waits
			for an integral number of clock cycles until it goes high.
RESETIN (nput)		When the signal on this pin goes low, the program counter is set
			to zero, the buses are tri-stated, and the MPU is reset.
RESET OU	T(Outp	ut)	This signal indicates that the MPU is being reset. The signal can be
			used to reset other devices.

The externally generated signals in 8085 are as follows:

Serial I/O Ports

The 8085 has two signals to implement the serial transmissions: SID(Serial Input Data) and SOD (Serial Output Data).

Conclusion: - Thus we have studied the Pin Diagram of 8085.

Experiment No 2 Aim: - To study the Architecture of 8085 microprocessor

The figure shows the architecture of 8085. We divide the architeture I different groups as follows:

- 1. Arithmetic and Logical group
- 2. Register group
- 3. Interrupt control group
- 4. Serial I/O control group
- 5. Instruction register, decoder and timing and control group.

Arithmetic and Logical group

This group consists of ALU, Accumulator or A register, Temporary register, Flag and flip-flops.

i. ALU:

The ALU performs arithmetic and logical operations such as addition, subtraction, ANDing, Oring, EXORing, etc. The inputs to the Alu are provided by accumulator and a temporary register both are 8 bits. The ALU will perform the operation and output result on internal data bus. The ALU is also of 8 bits so at a time, operation on 8 bit data can only be performed.

ii. Accumulator:

The accumulator is a 8 bit general purpose register connected to internal data bus and to ALU. It is also called as A register. As it is connected as one of the

inputs to ALU, it is used in most of the arithmetic and logic instructions. After performing an operation the Alu places its result on internal data bus, from there it is generally stored in accumulator. So accumulator is an integral part in performing different operations along with ALU. Also accumulator is used during I/O operations.

iii. Temporary register:

The other input to ALU is given by temporary register. This register is not available for user, it is only used internally by the microprocessor, so the name given temporary register. To perform arithmetic and logical operations microprocessor assumes one data available in accumulator and takes another data from other register (depends on instruction) into temporary register and then performs operation on the two data operands.

Example: ADD B instruction adds A reg + B reg. The result is stored in register A. in this case one data is available in A reg, and other data from B register is transferred to temporary register and then add operation is performed on them.

This temporary register is also used for other operation also, such as register to register data transfer, etc.

iv. Flag:

The flag is nothing but a group of flip flops used to give status of different operations result. As flag register is connected to ALU, when an operation is performed by ALU the status of result will be stored in flip-flops. It is clear that for all other operations the flag doesn't get affected, it will only give status if a operation is performed in ALU. The position of various flags available in 8085 as shown below:

D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
S	Z	X	AC	X	Ρ	X	СҮ

- **1. CY- Carry Flag**: If an operation peformed in ALU generates a carry from D_7 to next stage, the CY flag is set. It works as 9th bit for addition and as borrow flag for subtraction. If there is no carry out of MSB bit ie D_7 of result the CY flag is reset.
- **2.** AC Auxiliary Carry Flag: If an operation performed by ALU generates a carry from lower nibble i.e. $D_0 D_3$, to upper/higher nibble i.e. $D_4 D_7$ internally by microprocessor, the AC flag is set. i.e. carry given by D_3 to D_4 . This is not general flag. It is only used internally by microprocessor to perform binary to BCD conversion. It is not available for programmer for changing the sequence as it is for other 4 flags.
- **3. Z Zero Flag:** If an operation results in zero as a result the zero flag is set. If the result is not zero the zero flag is reset.

- **4. S Sign Flag:** In sign magnitudeformat always sign of a number is indicated by D_7 bit. This bit is exact replica of D_7 bit of result. If $D_7 = 1$, the flag is set and if $D_7 = 0$, the flag is reset.
- 5. P Parity Flag: This bit is used to indicate the perity of the result. if the result contain even number of 1's this flag is set. If the result contains odd number of 1's this flag is reset.

Register Group:

This group consists of 3 types of registers.

- i. Temporary registers
- ii. General purpose registers
- iii. Special purpose registers

i. Temporary registers (W and Z)

These are not avavilable for user and used only for internal operations such as to store operand immediate operand or address of memory. These are used internally by the microprocessor for execution of certain instructions.

ii. General purpose registers:

The 8085 contains 6 general purpose registers of 8 bits each, named as B, C, D, E, H and L. these can be used to store 8 bits of data or can be used to form a register pair to store 16 bit data. The register pairs available are BC, DE and HL. These registers are programmable by user. User can store any data in these registers and use it to perform different operations.

iii. Special purpose registers:

The 8085 contains 3 special purpose registers such as program counter, increment/decrement latch and stack pointer.

a. Program counter:

This is a 16 bit register used for execution of program. This register always points to address of memory from where the next instruction is to be fetched and executed. When microprocessor performs one operation of taking instruction i.e. fetching, the PC contents are automatically incremented by one to point to next location. In this way PC keeps the track for execution of program. Upon reset PC contents are set to 0000H, so after reset operation microprocessor will start execution of program from 0000H onwards.

b. Stack Pointer:

This is a 16 bit register used to define the stack starting address. Stack is a reserved portion of memory where temporary information may be stored or taken back under software control. The stack pointer is used to keep track of data stored.

c. Increment/Decrement latch:

This 16 bit register is used in cordination with PC and SP, to increment or decrement the contents of PC and SP registers.

In coordination with these registers two buffers are used.

a. Address buffer:

This is an 8 bit uni-directional buffer used for A_8 to A_{15} address lines. These are used to output higher order address on A_8 to A_{15} . When they are not in use or under certain conditions such as reset, hold, halt these are used to tristate A_8 to A_{15} address lines.

b. Address/Data buffer:

This is an 8 bit bidirectional buffer used for address and data. These 2 signals are multiplexed on AD_0 to AD_7 lines. In earlier part it is used to output lower order address A_0 to A_7 and in later part it is used to input or output data D_0 to D_7 . These addresses are taken from address lines and data is taken or transferred on internal data bus. Under certain conditions such as reset, hold, halt these are used to tristate A_0 to A_7 address/data lines. The various sources of addresses for the address register includes program counter, stack pointer, temporary registers, BC pair, DE pair and HL pair.

Interrupt Control

This block accepts different interrupt request input such as TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR, and informs control logic to take action in response to each signal. The response for TRAP, RST 7.5, RST 6.5, RST 5.5 is CALL at restart address. But for INTR, it generates a \overline{INTA} signal and expects external device should insert a RST code or CALL instructions.

Serial I/O Control Group

The data transferred on $D_0 \text{to} D_7$ lines is a parallel data, but under certain condition is advantageous to use serial data transfer. 8085 implements this using SID and SOD signal and the data on these lines is accepted or transferred under software control by serial I/O control block.

Instruction Register, Decoder and Control Group

i. Instruction register:

When an instruction is fetched from memory it is loaded in instruction register from there it is provided to decoder for decoding. This register is only activated when instruction code or opcode is available on internal data bus. It is non programmable register i.e. not available for programmer use. It accepts only opcode of instruction, operands are not accepted by this instead they are stored in registers.

ii. Instruction decoder:

This accepts a bit pattern from Instruction register, decodes it and gives the different information to control logic. The information includes what operation is to be performed, who is going to perform it, how many operand bytes the instruction contains, etc.

iii. Timing and Control Unit:

This is a control section of 8085. This accepts information from instruction decoder and generates micro steps to perform it so 8085 is called as microprogrammed. In addition to this the block accepts clock inputs and performs sequencing and synchronising operations required for communication between microprocessor and peripheral devices. То implement this it used different status and control signals.

For internal operations depending on decoder signals the steps or sequence is generally prepared. As an example we take the transfer of data from B register to A register. To implement this, steps taken by 8085 are:

- i. Take data from b register on to internal data bus.
- ii. Enable temporary register of ALU group to accept data from internal data bus.
- iii. Again enable the temporary register to send the data on internal data bus.
- iv. Enable A register to accept data from internal data bus.

In this way, the steps are implemented for execution of instructions in 8085.

Conclusion: - Thus we have studied Architecture of 8085.

Experiment No 3

Aim: - To study 8085 kit.

SYSTEM COMMANDS OVERVIEW

The HEX keypad made supports the following commands:

RESET	Provides hardware reset. Display shows "FRIEND" on pressing this key.
VI	Vector interrupt key. Activates RST 7.5 vectored interrupt.
SET	Allows the user to examine and modify the contents of RAM and only
	examination of contents is possible in case of errors.
INR	Increments memory address presently displayed in the address field of display.
DCR	Decrements memory address presently displayed in the address field of display.
REG	Allows the user to examine contents of CPU register and modify them if necessary
GO	Allows the user to load the program counter by the desired memory which is starting address of the program to be executed.
EXEC	Used to start the execution of GO or code command
CODE	Used for selecting one of the coded subroutines in the monitor.
STEP	Allows the user to execute the program in single step mode or break point mode.
SAVE	Used for saving the contents of memory onto an audio cassette.
LOAD	Used for loading the program from audio cassette back to the memory in RAM area
U ₁ – U ₄	These are keys user definable function keys. The functios of these keys can be defined by the user by loading the appropriate memory location with vector pointing to user subroutine.

SET, INR, DCR KEYS

You can use the set key to set the address of the memory location to be accessed and a dot appears in the address field which is made up of first four digits of the six digits display are data field the dot in the address field indicates that your next key will be treated as an address entry.

(Entry is from right to left and last 4 controls are retained)

When you have entered the 4-digit hexadecimal address ,press the INR key which will terminate the address entry and display the present contents of that memory location as the two digit to the data field.

Now you can modify or retain the contents of the location.

Pressing the INR key again will load the data field into the memory location at address field. This key will increment the address by 1 location abnd display the contents of that new location. This process continues till we have completed loading the desired memory locations within the required data.

DCR key also works in a similar way but it decrements the address by 1 location and points to the previous location.

Trying to load data input into a monitor EPROM location using SET key results in error.

SET, INR, DCR keys can also be used to verify the data loaded in RAM by displaying on execution after another.

REG

The key allows you to examine and optionally modify the contents of all 8085internal registers. Pressing register key will blank the display and add appears in the address field. Next press is valid register name. the register name appears on various hexadecimal number keys as follows:

- 3: interrupt mask
- 4: SPH (Stack Pointer high)
- 5: SPL (Stack Pointer low)
- 6: PCH (Program counter high)
- 7: PCL (Program counter low)
- 8: H (H register)
- 9: L (L register)
- A: A (A register)
- B: B (B register)
- C: C (C register)
- D: D (D register)
- E: E (E register)
- F: F (F register)

Pressing any one of these keys after pressing REG key will display the particular register name in the address field and the contents of that register will be displayed in the data field. Pressing INR key after this will point to the next register, contents of register can be modified at this point, similar to loading any other memory location. Pressing INR and DCR keys after modifying the contents of that register and ENTER terminates the command address field shows F in the leftmost digit the monitor indicates as usual that it is waiting for the next command.

GO/EXEC

This pair of key is used to execute a program from a desired location onwards. If the GO key is pressed it displays the present address in the program counter and the contents of the memory location at that address. A dot appears in the address field indicating that you can enter a new address in the address field. You can now modify the contents of the program counter. After loading the desired starting address in the address field, press EXEC key to execute the program, starting at the address. During execution of program the address field shows 'E' indicates that the user subroutine is being executed. The monitor regain control either after pressing the RESET key or after executing RST0, RST1, JMP 0000H, JMP 0008H instruction.

RES:RESET

Pressing RES key causes a hardware RESET operation. The control is transferred to location 0000H in the monitor. The monitor program is executed from 0000H onwards without saving the status resulting from any user program executed before the RESET. The display shows "FRIEND" as the sign of message and monitor waits for valid comment.

CONCLUSION:

Hence we have studied 8085 kit.

- A) A block of data is stored in memory location from C030H to C039H. Write a program to transfer the data in Reverse Order to memory location starting from C090H.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C039H.
- 3. Initialize DE pair by C090H.
- 4. Initialize Register C by OAH.
- 5. Copy data from memory location pointed by HL register pair to accumulator.
- 6. Store the accumulator data into the memory location pointed by DE register pair.
- 7. Decrease HL register pair by 1.
- 8. Increase DE register pair by 1.
- 9. If $C \neq 0$ then go to step 5.

10.Stop.

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXI H, C039H	Copy C039H to HL pair.
C001H		39		
C002H		C0		
C003H		11	LXI D, C090H	Copy C090H to DE pair
C004H		90		
C005H		C0		
C006H		OE	MVI C, 0AH	Copy 0AH into C register
C007H		0A		
C008H	Back	7E	MOV A,M	Move the contents of memory location

			Pointed by HL pair to accumulator.
C009H	12	STAX D	Store the contents of accumulator into DE
			register pair.
C00AH	2B	DCX H	Decrement HL pair by 1
COOBH	13	INX D	Increment DE pair by 1
C00CH	0D	DCR C	Decrement C register by 1.
C00DH	C2	JNZ Back	Jump to Back if Register C≠0
C00EH	08		
C00FH	C0		
C010H	CF	RST 1	Stop

Output

Input		
Memory	Before	After
Location	Execution	Execution
C030H		
C031H		
C032H		
C033H		
C034H		
C035H		
C036H		
C037H		
C038H		
C039H		

Memory	Before	After
Location	Execution	Execution
C090H		
C091H		
C092H		
C093H		
C094H		
C095H		
C096H		
C097H		
C098H		
C099H		

REGISTER VALUES:-

Register	Contents	Register	Contents
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus we have executed the program for transfer of data in reverse order.

- A) A block of data is stored in memory location from C030H to C039H. Another block of data having the same length is stored in memory location starting from C090H. Write a program to Exchange the contents of these two blocks.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL register pair by C030H.
- 3. Initialize DE register pair by C090H.
- 4. Initialize Register C by OAH.
- 5. Copy the contents of memory location pointed by HL pair to B register.
- 6. Copy the contents of memory location painted by DE pair to accumulator.
- 7. Copy the contents of accumulator to memory location pointed by HL pair.
- 8. Copy the contents of B register to accumulator.
- 9. Store the contents of accumulator into memory location pointed by DE pair
- 10.Increment HL pair by 1.
- 11.Increment DE pair by 1
- 12.Decrement C register by 1.
- 13. If C \neq 0 then go to step 5.
- 14.Stop.

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXIH, C030H	Copy C030H into HL register pair
C001H		30		
C002H		C0		
C003H		11	LXI D, C090H	Copy C090H into DE register pair
C004H		90		
C005H		C0		

C006H		0E	MVI C, OAH	Copy 0AH into C register
C007H		0A		
C008H	Back	46	MOV B,M	Copy the contents of memory
				Location pointed by HL pair to B register.
C009H		1A	LDAX D	Copy the contents of memory
				location pointed by DE pair to
				accumulator.
C00AH		77	MOV M,A	Copy the content of accumulator to
				memory location pointed by HL pair
COOBH		78	MOV A,B	Copy the contents of B register to
				accumulator
COOCH		12	STAX D	Store the contents of accumulator to
				Memory location pointed by DE pair
C00DH		23	INX H	Increment HL pair by 1
C00EH		13	INX D	Increment DE pair by 1
COOFH		0D	DCR C	Decrement C register by 1
C010H		C2	JNZ Back	Jump on Back If Register C≠ 0
C011H		08]
C012H		C0		
C013H		CF	RST 1	Stop

Memory	Before	After
Location	Execution	Execution
C030H		
C031H		
C032H		
C033H		
C034H		
C035H		
C036H		
C037H		
C038H		
C039H		

Memory	Before	After
Location	Execution	Execution
C090H		
C091H		
C092H		
C093H		
C094H		
C095H		
C096H		
C097H		
C098H		
C099H		

REGISTER VALUES:-

Register	Contents	Register	Contents
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	X	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus we have executed the program for the exchange of two memory block.

- A) Write a program that subtracts the number stored in C031H from the number stored in C030H. Store the absolute difference in memory location C090H as result.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C030H.
- 3. Copy the contents from memory location pointed by HL pair into accumulator.
- 4. Increase HL pair by 1.
- 5. Subtract the data of memory location pointed by HL pair from the contents of accumulator.
- 6. If the difference is positive than go to step 9.
- 7. Complement the content of accumulator.
- 8. Add 01H to the contents of accumulator.
- Store the contents of accumulator as a result in memory location C090H
 Stop

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXI H, C030H	Copy C030H in HL register pair
C001H		30		
C002H		C0		
C003H		7E	MOV A,M	Copy the contents of memory
				Location pointed by HL pair to accumulator
C004H		23	INX H	Increment HL pair by 1
C005H		96	SUB M	Subtract the contents of memory
				Location pointed by HL pair from the
				Contents of accumulator

C006H		F2	JP Next	Jump If the subtraction result is
C007H		0C		Positive to Next
C008H		C0		
C009H		2F	СМА	Complement the contents of accumulator
C00AH		C6	ADI 01H	Add 01h to the contents of accumulator
COOBH		01		
COOCH	Next	32	STA C090H	Store the contents of accumulator
C00DH		90		As a result to C090H
C00EH		C0		
C00FH		CF	RST 1	Stop

Execution I

Input

Memory location	Before Execution	After Execution	M
C030H			
C031H			CU

Output

Memory	Before	After
Location	Execution	Execution
C090H		

Execution II

Input

Output

Memory Refor	Boforo	Aftor					
wentory	Delute	Alter		Momory	Refore	Λftor	
location	Execution	Execution		Location	Execution	Evolution	
C030H				Location	Execution	Execution	
C031H				C090H			

REGISTER VALUES:-

Execution I

Register	Contents	Register	Contents
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	Х	AC	Х	Р	Х	СҮ

Execution II

Register	Contents	Register	Contents
Α		H	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus we have executed the program to find the absolute difference.

- A) A block of data is stored in memory location from C030H to C039H. Write a program to find the number of odd as well as even number in the given block.
 Store the results immediately after the end of block.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start
- **2.** Initialize HL pair by C030H.
- **3.** Copy 0AH in register C
- 4. Copy 00H in register B
- 5. Copy 00H in register D.
- **6.** Copy the data from the memory location pointed by HL pair into accumulator.
- 7. Rotate the contents of accumulator towards right by 1 bit.
- **8.** If CY = 1 then go to step 11.
- 9. Increase register B by 1
- 10.Jump unconditionally to step 13
- **11.**Increase register D by 1.
- **12.**Increase HL pair by 1.
- 13. Decrease register C by 1
- **14.**If Register C ≠0 than go to step 6.
- **15.**Copy the data from Register C into the memory location pointed by HL pair.
- 16. Increase HL pair by 1
- **17.**Copy data from register D into the memory location pointed by HL pair.
- **18.**Stop.

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXI H, C030H	Initialize HL pair with C030H.
C001H		30		
C002H		C0		
C003H		0E	MVI C, 0AH	Copy 0AH in register C
C004H		0A		
C005H		06	MVI B,00H	Copy 00H in register B
C006H		00		
C007H		16	MVI D, 00H	Copy 00H in register D
C008H		00		
C009H	Back	7E	MOV A,M	Copy the contents of memory
				Location pointed by HL pair to
				accumulator
C00AH		OF	RRC	Rotate the contents of accumulator
				Towards right by 1 bit
COOBH		DA	JC Next	Jump if CY = 1 to Next
COOCH		12		
C00DH		C0		
C00EH		04	INR B	Increment register B by 1
COOFH		C3	JMP Skip	Jump unconditionally to Skip
C010H		13		
C011H		C0		
C012H	Next	14	INR D	Increment register D by 1
C013H	Skip	23	INXH	Increment HL pair by 1
C014H		0D	DCR C	Decrement register C by 1
C015H		C2	JNZ Back	Jump if Register C ≠0
C016H		09		
C017H		C0		
C018H		70	MOV M,B	Copy the contents of B register
				To the memory location pointed
				By HL pair
C019H		23	INX H	Increment HL pair by 1
C01AH		72	MOV M,D	Copy the contents of D register
				To the memory location pointed
				By HL pair
C01BH		CF	RST 1	Stop

Memory	Before	After
Location	Execution	Execution
C030H		
C031H		
C032H		
C033H		
C034H		
C035H		
C036H		
C037H		
C038H		
C039H		
C03AH		
C03BH		

REGISTER VALUES:-

Register	Contents	Register	Contents
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION: -

Thus we have executed the program to find the odd as well as even numbers in the given block.

EXPERIMENT NO 8

<u>AIM:-</u>

- A) A block of data is stored in memory location from C031H. The length of the block is stored at C030H. Write a program that searches for first occurrence of data type 'ABH' in the given block. Store the address of this occurrence in HL pair. If number is not found, then HL pair must contain FFFFH.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Load HL pair with C030H.
- 3. Copy the contents of memory location pointed by HL pair in to C register.
- 4. Increase the contents of HL pair by 1.
- 5. Copy ABH in to D register.
- 6. Copy the contents of memory location pointed by HL pair in to accumulator.
- 7. Compare the contents of accumulator with the contents of D register.
- 8. If Z=0 then jump to stop.
- 9. Increase the contents of HL pair.
- 10. Decrease the contents of C register by 1.
- 11. If $Z \neq 0$ then jump to back.
- 12. Load HL pair with FFFFH.
- 13.Stop.

MEMORY LOCATION	LABEL	HEX CODE	MNEMONICS	COMMENTS
C000		21	LXI H,CO30H	Load HL pair with C030H.
C001		30		
C002		C0		
C003		4E	MOV C,M	Copy the contents of
				HL pair in to C register.

C004		23	INX H	Increase the contents of HL
				pair by 1.
C005		16	MVI D,ABH	Copy ABH in to D register.
C006		AB		
C007	BACK	7E	MOV A,M	Copy the contents of
				memory location pointed by
				HL pair in to accumulator.
C008		BA	CMP D	Compare the contents of
				accumulator and D register.
C009		CA	JZ STOP	If Z=0 then jump to STOP.
C00A		14		
COOB		C0		
C00C		23	INX H	Increase the contents of HL
				pair by 1.
COOD		0D	DCR C	Decrease the contents of C
				register by 1
COOE		C2	JNZ BACK	If Z≠0 then jump to BACK.
COOF		07		
C010		CO		
C011		21	LXI H,FFFFH	Load HL pair by FFFFH.
C012		FF		
C013		FF		
C014	STOP	CF	RST 1	Stop.

MEMORY LOCATION	BEFORE EXECUTION	AFTER EXECUTION
C030H	08	08
C031H		
C032H		
C033H		
C034H		
C035H		
C036H		
C037H		
C038H		

REGISTER TABLE:-

CASE1:- BLOCK OF DATA CONTAINING **ABH.**

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
C		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	X	AC	Х	Р	Х	СҮ

CASE2:- BLOCK OF DATA DOES NOT CONTAIN **ABH.**

REGISTER	CONTENTS	REGISTER	CONTENTS
А		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program to find first occurrence of data type 'ABH' in the given block.

- A) The block of data is stored in memory location C031H. The length of block is stored at C030H. Write a program that counts the occurrence of the number 'ABH' in the given block. Store the result in C090H.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Load HL pair with C030H.
- 3. Copy the contents of memory location pointed by HL pair in to C register.
- 4. Initialize D register with ABH.
- 5. Initialize B register with 00H.
- 6. Increase the contents of HL pair by 1.
- 7. Copy the contents of memory location pointed by HL pair in to accumulator.
- 8. Compare the contents of accumulator with the contents of D register.
- 9. If Z≠0 then jump to skip.
- 10. Increase the contents of B register by 1.
- 11. Increase the contents of HL pair by 1.
- 12. Decrease the contents of C register by 1.
- 13.If Z≠0 then jump to back.
- 14. Copy the contents of B register in to accumulator.
- 15. Store the contents of accumulator at C090H.
- 16. Stop.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		21	LXI H,CO30H	Load HL pair with C030H
C001		30		
C002		C0		
C003		4E	MOV C,M	Move the contents of memory
				location pointed by HL pair in to C register.
C004		16	MVI D,ABH	Move ABH in to D register.
C005		AB		
C006		06	MVI B,00H	Move 00H in to B register.
C007		00		
C008		23	INX H	Increase the contents of HL pair by 1.
C009	BACK	7E	MOV A,M	Move the contents of memory location pointed by HL pair in to accumulator.
C00A		BA	CMP D	Compare the contents of D register with the contents of accumulator.
COOB		C2	JNZ SKIP	If Z≠0 then jump to skip.
C00C		OF		
COOD		C0		
COOE		04	INR B	Increase the contents of B register by 1.
COOF	SKIP	23	INX H	Increase the contents of HL pair by 1.
C010		0D	DCR C	Decrease the contents of C register by 1.
C011		C2	JNZ BACK	If Z≠0 then jump to back.
C012		09		
C013		C0		
C014		78	MOV A,B	Move the contents of B register in to the accumulator.
C015		32	STA C090H	Store the contents of accumulator
C016		90		at memory location C090H.
C017		C0		
C018		CF	RST 1	Stop.

MEMORY LOCATION	BEFORE EXECUTION	AFTER EXECUTION
C030	08	08
C031		
C032		
C033		
C034		
C035		
C036		
C037		
C038		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program to find total occurrence of data type 'ABH' in the given block.

- A) Write a program that multiplies two 1 byte hex numbers stored in consecutive memory locations staring from C030H. Store the two byte result in consecutive memory location starting from C090H beginning with lower order byte.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start
- 2. Initialize HL pair by C030H
- 3. Copy data from memory location pointed by HL pair into register B.
- 4. Increment HL pair by 1.
- 5. Copy data from the memory location pointed by HL pair into register C.
- 6. Perform EX OR operation between the contents of accumulator and the contents of accumulator.
- 7. Copy data 00H into register D.
- 8. Add the contents of register B with accumulator.
- 9. If CY = 0 than go to step 11.
- 10. Increment register D by 1.
- 11. Decrement register C by 1.
- 12. If Z = 0 then go to step 8.
- 13. Initialize HL pair C090H.
- 14. Copy data from the accumulator to memory location pointed by HL pair.
- 15.Increment HL pair 1.
- 16. Copy data from register D to memory location pointed by HL pair.
- 17.Stop.

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXI H, C030H	Initialize HL pair With C030H
C001H		30		
C002H		C0		
C003H		46	MOV B.M	Copy data from memory
				Location pointed by HL pair
				To register B
C004H		23	INX H	Increment HL pair by 1
C005H		4E	MOV C,M	Copy data from memory
				Location pointed by HL pair
				To register C
C006H		AF	XRA A	Initialize accumulator with 00H
C007H		16	MVI D, 00H	Copy 00H to register D
C008H		00		
C009H	Back	80	ADD B	Add the contents of register B
				with the contents of the contents
				of accumulator
C00AH		D2	JNC Next	Jump to Next If CY ≠ 0
COOBH		OE		_
C00CH		C0		
COODH		14	INR D	Increment register D by 1
COOEH	Next	0D	DCR C	Decrement register C by 1
COOFH		C2	JNZ Back	Jump to Back if register C ≠ 0
C010H		09		_
C011H		C0		
C012H		21	LXI H CO90H	Initialize HL pair with C090H
C013H		90		
C014H		C0		
C015H		77	MOV M,A	Copy the contents of accumulator
				to the memory location pointed
				by HL pair
C016H		23	INX H	Increment HL pair 1
C017H		72	MOV M,D	Copy the data of register C
				To memory location pointed by
				HL pair.
C018H		CF	RST1	Stop

Input

Output

Memory Location	Before Execution	After Execution
C030H		
C031H		

Memory Location	Before Execution	After Execution
C090H		
C091H		

REGISTER VALUES:-

Register	Contents	Register	Contents
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	X	AC	X	Ρ	Х	СҮ

CONCLUSION:

Thus we have executed the program to multiply two numbers.

- A) Write a program that divides two 1 byte hex numbers where the dividend is stored in C030H and divisor is stored in C031H. Store the quotient and remainder in the next consecutive memory location respectively.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C030H.
- 3. Copy data from memory location pointed by HL pair to accumulator.
- 4. Increment HL pair by 1.
- 5. Copy data from memory location pointed by HL pair to register B.
- 6. Initialize DE pair by 00H.
- 7. Subtract the contents of register B from the contents of accumulator.
- 8. Jump if Minus to step 11.
- 9. Increment DE pair by 1.
- 10.If Z = 1 than jump to step 7.
- 11.Add the contents of register B to accumulator.
- 12.Initialize HL pair by C090H.
- 13. Copy data from register D to memory location pointed by HL pair.
- 14.Increment HL pair by 1.
- 15.Copy data from accumulator to memory location pointed by HL pair.16.Stop.

HEX CODE:-

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXI H,C030H	Initialize HL pair with C030H
C001H		30		
C002H		C0		
C003H		7E	MOV A,M	Copy data from memory location pointed
				by HL pair to accumulator

C004H		23	INX H	Increment HL pair by 1
C005H		46	MOV B,M	Copy data from memory location pointed
				by HL pair to register B
C006H		16	MVI D, 00H	Copy 00H to register D
C007H		00		
C008H	Back	90	SUB B	Subtract the contents of register B from the
				contents of accumulator
C009H		FA	JM Next	Jump if Minus to Next
C00AH		10		
COOBH		C0		
C00CH		14	INR D	Increment register D by 1
C00DH		C3	JMP Back	Jump unconditionally to Back
C00EH		08		
C00FH		C0		
C010H	Next	80	ADD B	Add the contents of register B with the
				contents
				Of accumulator.
C011H		21	LXIH,C090H	Initialize HL pair with C090H
C012H		90		
C013H		C0		
C014H		72	MOV M,D	Copy the contents of register D to memory
				location pointed by HL pair
C015H		23	INX H	Increment HI pair by 1
C016H		77	MOV M,A	Copy the contents of accumulator to
				memory location pointed by HL pair
C017H		CF	RST 1	Stop

Input

Output

Memory Location	Before Execution	After Execution	Memory Location	Before Execution	After Execution
C030H			C090H		
C031H			C091H		

REGISTER VALUES:-

Register	Contents	Register	Contents
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	Х	AC	X	Р	Х	СҮ

CONCLUSION:

Thus we have executed the program to divide first number by second number.

- A) A block of data is stored in memory location from C030H TO C039H.Write a program to find the smallest as well as greatest number from this block using linear search. Store the results immediately after the end of block.
- B) Enter the program on microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as the contents of the registers used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start
- 2. Initialize HI pair by C030H.
- 3. Copy data from memory location pointed by HL pair to register B.
- 4. Copy data from memory location pointed by HL pair to register D.
- 5. Increment HL pair by 1.
- 6. Copy 09H into register C.
- 7. Copy data from memory location pointed by HL pair to accumulator.
- 8. Compare the value of accumulator with register B.
- 9. If CY \neq 0 then go to step 13.
- 10. If Z = 1 then go to step 13.
- 11. Copy data from accumulator to register B.
- 12. Unconditional jump go to step 17.
- 13. Compare the contents of accumulator with the contents of register D.
- 14.If CY = 1 then go to step 17
- 15.If Z = 1 then go to step 17
- 16.Copy data from accumulator to register D.
- 17.Increment HL pair by 1
- 18.Decrement register C by 1
- 19.If Content of register $C \neq 0$ then go to step 7
- 20.Copy the content of register B to the memory location pointed by HL pair.
- 21.Increment HL pair by 1
- 22.Copy the content of register D to the memory location pointed by HL pair. 23.Stop.

Memory	Label	Hex	Mnemonics	Comments
Location		Code		
C000H		21	LXI H, C030H	Initialize HL pair with C030H
C001H		30		
C002H		C0		
C003H		46	MOV B,M	Copy the data from the memory location
				Pointed by HL pair to register B
C004H		56	MOV D,M	Copy the data from the memory location
				Pointed by HL pair to register D
C005H		23	INX H	Increment HL pair by 1
C006H		OE	MVI C, 09H	Copy 09H to register C
C007H		09		
C008H	BACK	7E	MOV A,M	Copy the data from the memory location
				Pointed by HL pair to accumulator
C009H		B8	СМР В	Compare the content of accumulator
				With the contents of register B
C00AH		D2	JNC SKIP	If CY = 0 then Jump to Skip
COOBH		14		
C00CH		C0		
C00DH		CA	JZ SKIP	If Z = 1 then Jump to Skip
C00EH		14		
COOFH		C0		
C010H		47	MOV B,A	Copy the data from accumulator to register B
C011H		C3	JMP NEXT	Unconditional Jump to Next
C012H		1C		
C013H		C0		
C014H	SKIP	BA	CMP D	Compare the content of accumulator
				With the contents of register D
C015H		DA	JC NEXT	If CY = 1 then jump to Next
C016H		1C		
C017H		C0		
C018H		CA	JZ NEXT	If Z= 1 then jump to Next
C019H		1C		
C01AH		C0		
C01BH	NEXT	57	MOV D,A	Copy the data from accumulator to register D
C01CH		23	INX H	Increment HL pair by 1

C01DH	0D	DCR C	Decrement register C by 1
C01EH	C2	JNZ BACK	If the content of register $C \neq 0$
C01FH	08		then jump to back
C020H	C0		
C021H	70	MOV M,B	Copy the data from register B to memory
			Location Pointed by HL pair
C022H	23	INX H	Increment HL pair by 1
C023H	72	MOV M,D	Copy the data from register D to
			the memory location Pointed by HL pair
C024H	CF	RST 1	Stop

<u>INPUT</u>

Memory	Before	After
Location	Execution	Execution
C030H		
C031H		
C032H		
C033H		
C034H		
C035H		
C036H		
C037H		
C038H		
C039H		

<u>OUTPUT</u>

Memory	Before	After
Location	Execution	Execution
C03AH		
C03BH		

REGISTER VALUES:-

Register	Contents	Register	Contents
Α		H	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG REGISTER:-

S	Z	Х	AC	Х	Ρ	Х	СҮ

CONCLUSION :-

Thus we have executed the program to find out smallest as well largest number out of the block.

- A) Write a program that separates the two nibbles of a number stored in CO30H and stores the same in memory locations CO31H and CO32H. The program must also multiply the two nibbles and stores the product in CO90H.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C030H.
- 3. Copy data from memory to accumulator.
- 4. Copy data from accumulator to B register.
- 5. Perform AND operation between contents of accumulator and OF and store the result in accumulator.
- 6. Increase HL pair by 1.
- 7. Copy data from accumulator to memory.
- 8. Copy data from accumulator to C register.
- 9. Copy data from B register to accumulator.
- 10. Rotate the contents of accumulator to right by 1 position.
- 11. Rotate the contents of accumulator to right by 1 position.
- 12. Rotate the contents of accumulator to right by 1 position.
- 13. Rotate the contents of accumulator to right by 1 position.
- 14. Perform AND operation between contents of accumulator and OF and store result in accumulator.
- 15. Increase HL pair by 1.
- 16. Copy data from accumulator to memory.
- 17. Copy data from accumulator to B register.
- 18. Perform EX-OR operation between the contents of accumulator and the contents of accumulator.
- 19. Adds the contents of B register with the contents of accumulator and the store the result in accumulator.
- 20. Decrease the contents of C register by 1.

21.If Z≠0 then go to step 19.

22.Copies data from accumulator to memory.

23. Stop.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		21	LXI H, C030H	Copy C030 in HL pair.
C001		30		
C002		C0		
C003		7E	MOV A,M	Copy the contents of memory
				location pointed by HL pair in to
				accumulator.
C004		47	MOV B,A	Copy the contents of accumulator
				to B register.
C005		E6	ANI OFH	Perform AND operation between
C006		OF		contents of accumulator and OFH.
C007		23	INX H	Increase the contents of HL pair by
				1.
C008		77	MOV M,A	Copy the contents of accumulator
				in to the memory location pointed
				by HL pair.
C009		4F	MOV C,A	Copy the contents of accumulator
				in to the C register.
C00A		78	MOV A,B	Copy the contents of B register in
				to accumulator.
COOB		OF	RRC	Rotate the contents of
				accumulator to right by 1 position.
C00C		OF	RRC	Rotate the contents of
				accumulator to right by 1 position.
COOD		OF	RRC	Rotate the contents of
				accumulator to right by 1 position.
COOE		OF	RRC	Rotate the contents of
				accumulator to right by 1 position.
COOF		E6	ANI OFH	Perform AND operation between
C010		OF		contents of accumulator and OFH.
C011		23	INX H	Increase the contents of HL pair by
				1.
C012		77	MOV M,A	Copy the contents of accumulator

				in to the memory location pointed
				by HL pair.
C013		47	MOV B,A	Copy the contents of accumulator
				in to the B register.
C014		AF	XRA A	Perform EX-OR operation between
				the contents of accumulator and
				the contents of accumulator.
C015	BACK	80	ADD B	Add the contents of B register with
				the contents of accumulator.
C016		0D	DCR C	Decrease the contents of C register
				by 1.
C017		C2	JNZ BACK	Jump until the contents of C
C018		15		register becomes zero.
C019		C0		
C01A		32	STA C090H	Store the contents of accumulator
C01B		90		in to memory location C090H.
C01C		C0		
C01D		CF	RST 1	Stop.

<u>INPUT</u>

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030		
C031		
C032		

<u>OUTPUT</u>

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C090		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program to separate two nibbles of a number and multiply them.

- A) Write a program that adds the BCD contents of block of memory block length in hex not exceeding 63H= $(99)_{10}$ is stored at C030H and starting address of block is C031H. Store the BCD sum as result starting from memory location C090H.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C030H.
- 3. Copy data from memory to C register.
- 4. Increase the contents of HL pair by 1.
- 5. Initialize DE pair by 00H.
- 6. Clear accumulator
- 7. Add the contents of memory location pointed by HL pair with the contents of the accumulator.
- 8. Decimal adjust addition.
- 9. If CY≠0 then go to step11.
- 10. Increase the contents of DE pair by 1.
- 11. Increase the contents of HL pair by 1.
- 12. Decrease the contents of C register by 1.
- 13. If Z≠0 then go to step7.
- 14. Initialize HL pair by C090H.
- 15. Copy data from accumulator to memory.
- 16. Increase the contents of HL pair by 1.
- 17. Copy data from D register to memory.
- 18. Stop.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		21	LXI H,CO30H	Copy C030H in HL pair.
C001		30		
C002		C0		
C003		4E	MOV C,M	Copy the contents of memory
				location pointed by HL pair in to
				C register.
C004		23	INX H	Increase the contents of HL pair
				by 1.
C005		16	MVI D,00H	Initialize DE pair by 00H
C006		00		
C007		AF	XRA A	Perform EX-OR operation
				between the contents of
				accumulator and the contents of
				accumulator.
C008	ВАСК	86	ADD M	Add the contents of memory
				location pointed by HL pair with
				the contents of accumulator.
C009		27	DAA	Decimal adjust addition
C00A		D2	JNC SKIP	if CY≠0 then jump to skip
COOB		OE		
C00C		C0		
COOD		14	INR D	Increase the contents of D
				register by 1.
COOE	SKIP	23	INX H	Increase the contents of HL pair
				by 1.
COOF		0D	DCR C	Decrease the contents of C
				register by 1.
C010		C2	JNZ BACK	if Z≠0 then jump to back
C011		08		
C012		C0		
C013		21	LXI H,C090H	Copy C090H in HL pair.
C014		90		
C015		CO		
C016		77	MOV M,A	Copy the contents of
				accumulator in to the memory
				location pointed by HL pair.

C017	23	INX H	Increase the contents of HL pair
			by 1.
C018	72	MOV M,D	Copy the contents of D register
			in to the memory location
			pointed by HL pair.
C019	CF	RST 1	Stop.

<u>INPUT</u>		
MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030		
C031		
C032		
C033		
C034		
C035		
C036		
C037		
C038		

<u>OUTPUT</u>

MEMORY	BEFORE	AFTER
C090	LALCOTION	
C091		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	CY

CONCLUSION:-

Thus, we have executed the program to add the BCD numbers and store the results.

- A) Write a program that adds the contents of a block of memory using DAD instruction. Block length is stored at C030H and starting address of block is C031H. Store the 2 bytes result below the end of the block.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C030H.
- 3. Copies data from memory to accumulator.
- 4. Increase the contents of HL pair by 1.
- 5. Initialize DE pair by 0000H.
- 6. Copies data from D register to B register.
- 7. Copies data from memory to C register.
- 8. Exchanges the contents of H with D and L with E register.
- 9. The contents of register pair are added to the contents of HL pair.
- 10. Exchanges the contents of H with D and L with E register.
- 11. Increase the contents of HL pair by 1.
- 12. Decrease accumulator by 1.
- 13.If Z≠0 then go to step 7.
- 14. Copies data from register E to memory location pointed by HL pair.
- 15. Increase the contents of HL pair by 1.
- 16.Copy the contents of D register in to memory location pointed HL pair. 17.Stop.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		21	LXI H,C030H	Load HL pair with C030H
C001		30		
C002		C0		
C003		7E	MOV A,M	Move the contents of
				memory location pointed by
				HL pair in to accumulator
C004		23	INX H	Increase the contents of HL
				pair by 1.
C005		11	LXI D,0000H	Load DE pair with 0000H
C006		00		
C007		00		
C008		42	MOV B,D	Copy the contents of D
				register in to B register.
C009	BACK	4E	MOV C,M	Move the contents of
				memory location pointed by
				HL pair in to C register.
C00A		EB	XCHG	Exchange the contents of H
				register with the contents of
				D register and the contents
				of L register with the
				contents of E register.
COOB		09	DAD B	Adds the contents of BC pair
				with the contents of HL pair.
C00C		EB	XCHG	Exchange the contents of H
				register with the contents of
				D register and the contents
				of L register with the
				contents of E register.
COOD		23	INX H	Increase the contents of HL
				pair by 1.
COOE		3D	DCR A	Decrease the contents of A
				register by 1.
COOF		C2	JNZ BACK	If Z≠0 then jump to back.
C010		09		
C011		C0		
C012		73	MOV M,E	Move the contents of E

			register in to the memory
<u> </u>	22		location pointed by hE pair.
C013	23	INX H	Increase the contents of HL
			pair by 1.
C014	72	MOV M,D	Move the contents of D
			register in to the memory
			location pointed by HL pair.
C015	CF	RST1	Stop.

<u>Input</u>

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030	08	08
C031		
C032		
C033		
C034		
C035		
C036		
C037		
C038		

<u>OUTPUT</u>

MEMORY LOCATION	BEFORE EXECUTION	AFTER EXECUTION
C039		
C03A		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program to find the sum of contents of block of memory using DAD instruction.

- A) A block of data is stored in memory location C030H. The length of the block is 10 bytes. Write a program that sorts the given data in ascending order.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize B register with 09H.
- 3. Initialize HL pair with C030H.
- 4. Initialize C register with 09H.
- 5. Move the contents of memory location pointed by HL pair in to accumulator.
- 6. Increase the contents of HL pair by 1.
- 7. Compare the contents of memory location pointed by HL pair with the contents of accumulator.
- 8. If CY=0 then jump to skip.
- 9. If Z=0 then jump to skip.
- 10. Move the contents of memory location pointed by HL pair in to D register.
- 11. Move the contents of accumulator in to the memory location pointed by HL pair.
- 12. Decrease the contents of HL pair by 1.
- 13. Move the contents of D register in to memory location pointed by HL pair.
- 14. Increase the contents of HL pair by 1.
- 15. Decrease the contents of C register by 1.
- 16. If $Z \neq 0$ then jump to back.
- 17. Decrease the contents of B register by 1.
- 18. If Z≠0 then jump to start.
- 19. Stop.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		06	MVI B,09H	Initialize B register with 09H.
C001		09		
C002	START	21	LXI H,C030H	Loads HL pair with C030H.
C003		30		
C004		C0		
C005		OE	MVI C,09H	Initialize C register with 09H.
C006		09		
C007	BACK	7E	MOV A,M	Move the contents of memory location pointed by HL pair in to accumulator.
C008		23	INX H	Increase the contents of HL pair by 1.
C009		BE	CMP M	Compare the contents of memory location pointed by HL pair with the contents of accumulator.
C00A		DA	JC SKIP	If CY=1 then jump to skip.
COOB		15		
C00C		C0		
COOD		CA	JZ SKIP	If Z=0 then jump to skip.
COOE		15		
COOF		C0		
C010		56	MOV D,M	Move the contents of memory location pointed by HL pair in to D register.
C011		77	MOV M,A	Move the contents of accumulator in to the memory location pointed by HL pair.
C012		2B	DC X H	Decrease the contents of HL pair by 1.
C013		72	MOV M,D	Move the contents of D register in to memory location pointed by HL pair.
C014		23	INX H	Increase the contents of HL pair by 1.
C015	SKIP	0D	DCR C	Decrease the contents of C register by 1.
C016		C2	JNZ BACK	If Z≠0 then jump to back.
C017		07		
C018		C0		
C019		05	DCR B	Decrease the contents of B register by 1.

C01A	C2	JNZ START	If Z≠0 then jump to start.
C01B	02		
C01C	C0		
C01D	CF	RST 1	Stop.

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030		
C031		
C032		
C033		
C034		
C035		
C036		
C037		
C038		
C039		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program to arrange the data inside the memory block in ascending order.

- A) A 4 byte hex number beginning with lower order byte is stored from memory location C030H.Write a program that checks whether the given number considered in hex is palindrome or not. If the number is palindrome then memory location C090H must contain 00H else FFH.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Initialize HL pair by C030H.
- 3. Loads accumulator with contents of C033H.
- 4. Rotates the contents of accumulator towards right by 1 position.
- 5. Rotates the contents of accumulator towards right by 1 position.
- 6. Rotates the contents of accumulator towards right by 1 position.
- 7. Rotates the contents of accumulator towards right by 1 position.
- 8. Compare of the contents memory location with the contents of accumulator.
- 9. If Z≠0 then jump to skip.
- 10. Increase the contents of HL pair by 1.
- 11.Loads the accumulator with the contents of memory location C032H.
- 12. Rotates the contents of accumulator towards right by 1 position.
- 13. Rotates the contents of accumulator towards right by 1 position.
- 14. Rotates the contents of accumulator towards right by 1 position.
- 15. Rotates the contents of accumulator towards right by 1 position.
- 16.Compare of the contents memory location with the contents of accumulator.
- 17.If Z≠0 then jump to skip.
- 18.Initialize accumulator with 00H.
- 19.Jump to next.
- 20. Initialize accumulator with FFH.
- 21. Store the contents of accumulator at memory location C090H.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		21	LXI H,C030H	Loads HL pair withC030H.
C001		30		
C002		C0		
C003		3A	LDA C033H	Loads accumulator with the
C004		33		contents of memory location
C005		CO		С033Н.
C006		OF	RRC	Rotates the contents of
				accumulator towards right by 1
				position.
C007		OF	RRC	Rotates the contents of
				accumulator towards right by 1
				position.
C008		OF	RRC	Rotates the contents of
				accumulator towards right by 1
				position.
C009		OF	RRC	Rotates the contents of
				accumulator towards right by 1
				position.
COOA		BE	CMP M	Compare of the contents memory
				location with the contents of
				accumulator.
COOB		C2	JNZ SKIP	If Z≠0 then jump to skip.
C00C		11		
COOD		CO		
COOE		23	INX H	Increase the contents of HL pair by 1.
COOF		3A	LDA C032	Loads accumulator with the
C010		32		contents of memory location
C011		C0		С032Н.
C012		OF	RRC	Rotates the contents of
				accumulator towards right by 1
				position.
C013		OF	RRC	Rotates the contents of

				accumulator towards right by 1
C014		OF	RRC	Rotates the contents of accumulator towards right by 1 position.
C015		OF	RRC	Rotates the contents of accumulator towards right by 1 position.
C016		BE	СМР М	Compare of the contents memory location with the contents of accumulator.
C017		C2	JNZ SKIP	If Z≠0 then jump to skip.
C018		1F		
C019		C0		
C01A		3E	MVI A,00H	Initialize accumulator with 00H.
C01B		00		
C01C		C3	JMP NEXT	Jump unconditionally to next.
C01D		21		
C01E		C0		
C01F	SKIP	3E	MVI A,FFH	Initialize accumulator with FFH.
C020		FF		
C021	NEXT	32	STA C090H	Store the contents of
C022		90		accumulator at memory location
C023		C0		С090Н.
C024		CF	RST 1	Stop.

<u>CASE 1:-</u>

MEMORY TABLE:-

<u>Input</u>

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030		
C031		
C032		
C033		

<u>OUTPUT</u>

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C090		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

<u>CASE 2:-</u>

MEMORY TABLE:-

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030		
C031		
C032		
C033		

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C090		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		Н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	X	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program to identify given number considered in hex is palindrome or not

- A) Write a program to convert a 2 digit BCD number stored at memory location C030H in to its binary equivalent and store the binary value in memory location C090H.
- B) Enter the program on the microprocessor kit.
- C) Execute the program. Write the contents of both data blocks before and after execution as well as contents of register used in the program after execution and the bit contents of five flags individually. Verify the results.

ALGORITHM:-

- 1. Start.
- 2. Loads the accumulator with the contents of memory location C030H.
- 3. Move the contents of accumulator in to B register.
- 4. Perform AND operation between the contents of accumulator and OFH.
- 5. Move the contents of accumulator in to C register.
- 6. Move the contents of B register in to accumulator.
- Rotates the contents of accumulator towards right position by 1 position.
- 8. Rotates the contents of accumulator towards right position by 1 position.
- 9. Rotates the contents of accumulator towards right position by 1 position.
- 10.Rotates the contents of accumulator towards right position by 1 position.
- 11.Perform AND operation between the contents of accumulator and 0FH.
- 12. Move the contents of accumulator in to B register.
- 13. Initialize D register with OAH.
- 14.Perform EX-OR operation between the contents of accumulator and the contents of accumulator.
- 15.Adds the contents of D register with the contents of accumulator.
- 16. Decrease the contents of B register by 1.
- 17.If Z≠0 then jump to back.
- 18.Adds the contents of C register with the contents of accumulator.
- 19. Store the contents of accumulator at memory location C090H.

MEMORY	LABEL	HEX	MNEMONICS	COMMENTS
LOCATION		CODE		
C000		3A	LDA C030H	Loads the contents of memory location
C001		30		at C030H in to accumulator.
C002		C0		
C003		47	MOV B,A	Move the contents of accumulator in
				to B register.
C004		E6	ANI OF	Perform AND operation between the
C005		OF		contents of accumulator and 0FH.
C006		4F	MOV C,A	Move the contents of accumulator in
				to Cregister.
C007		78	MOV A,B	Move the contents of B register in to
				accumulator.
C008		OF	RRC	Rotates the contents of accumulator
				towards right by 1 position.
C009		OF	RRC	Rotates the contents of accumulator
				towards right by 1 position.
C00A		OF	RRC	Rotates the contents of accumulator
				towards right by 1 position.
COOB		OF	RRC	Rotates the contents of accumulator
				towards right by 1 position.
COOC		E6	ANI OF	Perform AND operation between the
COOD		OF		contents of accumulator and 0FH.
COOE		47	MOV B,A	Move the contents of accumulator in
				to B register.
COOF		16	MVI D,0AH	Initialize the D register with 0AH.
C010		0A		
C011		AF	XRA A	Perform EX-0R operation between the
				contents of accumulator and the
				contents of accumulator.
C012	BACK	82	ADD D	Adds the contents of D register with
				the contents of accumulator.
C013		05	DCR B	Decrease the contents of B register by
				1.
C014		C2	JNZ BACK	If Z≠0 then jump to back.
C015		12		
C016		C0		

C017	81	ADD C	Add the contents of C register with the contents of accumulator.
C018	32	STA C090H	Store the contents of accumulator at
C019	90		memory location C090H.
C01A	C0		
C01B	CF	RST 1	Stop.

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C030		

MEMORY	BEFORE	AFTER
LOCATION	EXECUTION	EXECUTION
C090		

REGISTER TABLE:-

REGISTER	CONTENTS	REGISTER	CONTENTS
Α		н	
В		L	
С		SPH	
D		SPL	
E		РСН	
F		PCL	

FLAG STRUCTURE:-

S	Z	Х	AC	Х	Р	Х	СҮ

CONCLUSION:-

Thus, we have executed the program for converting BCD number into its Hexadecimal equivalent.